小明看看台湾视频发布

    1. <form id=HLQWwsEFR><nobr id=HLQWwsEFR></nobr></form>
      <address id=HLQWwsEFR><nobr id=HLQWwsEFR><nobr id=HLQWwsEFR></nobr></nobr></address>

      Bin-arrays

      Introduction

      Bin-arrays are a compact way of storing a large collection of lists while allowing modifications in O(1) time. They share many of the characteristics of doubly-linked lists and are applicable to many of the situations where doubly-linked lists would be used. Bin-arrays are most useful, however, when dealing with large amounts of data, and when using a minimal amount of memory is more important than having extremely fast lookups, insertions, or deletions.

      Structure and Algorithms

      A precise statement of the problem being solved is, how do you compactly store a large collection of homogeneous lists of varying lengths while allowing deletions of arbitrary elements and insertions at arbitrary positions in constant time?

      Figure 1. Minimal Representation

      As a basis for evaluating the effectiveness of our proposed solution, consider the simpler problem of storing a known set of values in an immutable structure.
      Figure 1 above shows the most compact way of storing the pair of lists [1, 2, 3] and [4, 5]. The general scheme is to place all elements of each list in a contiguous block of slots in a single array. If this is done carefully, we can even do without explicitly recording the index of the last element of each list, and thereby save space. Specifically, we can deduce the index of the end of a given list from the index of the start of the following list.

      Figure 2. Linked-List Representation

      The most straightforward solution to the stated problem is shown in Figure 2 above. The general scheme is to allocate a node for each element in each list and to link together the elements using forward and backward pointers. This approach is easy to implement, easy to understand, and reasonably compact. However, the memory usage is not as low as it could be for the following reasons. First, allocating a large number of small objects can cause an undesirable amount of overhead in the general purpose memory allocation routines of a given language (for example, malloc() in C). Some implementations of memory allocators are better able to deal with this situation than others, but it is probably not unreasonable to assume that there will be undesirable overhead. (Note that in C++, a programmer can write a class-specific operator new() to dramatically reduce, though perhaps not entirely eliminate, the overhead.) Second, using a separate object for each element entails a nontrivial amount of fixed overhead per object in Java. This is so because every class in Java must derive from Object, which means that even an empty object takes up around 16 bytes.

      Figure 3. Array-based Linked-List Representation

      Figure 3 above shows an approach which avoids both these problems by allocating only three arrays rather than lots of individual objects. The general scheme is to store each element in an array and to use a pair of array indices to link together the elements. Memory usage, however, may still not be as low as could be desired. If the user data consists simply of 4-byte integers and each link data is a 4-byte integer, then there is a constant 200% overhead in this representation. When storing a million elements, this amounts to 8MBs of overhead. This may seem like a tolerable amount of overhead given the large amounts of memory common in even desktop systems these days, but it still seems worthwhile to try to reduce the memory usage even further. It is quite likely that we may want to deal with not just a million elements, but say ten million elements, or even fifty million elements. These numbers imply overheads of 80MBs and 400MBs, which are sizable amounts even today.

      Figure 4. Bin-arrays Representation

      The bin-arrays data structure, shown in Figure 4 above, is a modification of the array-based linked-list approach. It reduces memory usage by reducing the overhead of the link data. In this scheme, the elements of a given list are stored in one of four arrays. The array chosen depends on the length of the list. A list of length 1 (for example, [6]) is stored in the 1-bins array; one of length 2 (for example, [4, 5]) is stored in the 2-bins array; one of length 3 (for example, [1, 2, 3]) is stored in the 3-bins array; and finally, one of length 4 or longer (for example, [7, 8, 9, 10, 11, 12, 13]) is stored in the threaded 4-bins array. Inserting to, or deleting from, a list may cause that list to move to a different array. For example, appending to the list [6] will cause it to move successively to the 2-bins array, then the 3-bins array, and finally to the 4-bins array. Similarly, deleting from the list [1, 2, 3] will cause it to move successively to the 2-bins array and then to the 1-bins array. Two bits are reserved in the index stored in the index array for indicating which of these four arrays actually contains the elements of a given list.

      The 1-bins, 2-bins, and 3-bins arrays store user data contiguously in fixed-size blocks. Because each stored list fits entirely within a block, we can do without storing any link data. Hence, the memory usage in this scheme for a collection of lists containing fewer than 4 elements is near optimal.

      The 4-bins array stores the lists that have 4 or more elements. The approach is similar to the array-based linked-list representation except that there are now four data elements per a pair of forward and backward links. There are also a few other slight differences. The "previous" link of the first bin of a given list stores the index of the last bin of the same list. This makes it possible to find the last bin in constant time, in order to do appends, and to determine when the end of the chain of bins has been reached during traversals. Another difference is that the "next" link of the last bin gives the size of the list. In combination with the "previous" link of the first bin, this makes it possible to determine the length of any list in constant time. Finally, because each bin has room for four elements, and because not all of the slots may be occupied at a given moment, two bits in the "previous" link of each bin is reserved for recording the current occupancy (assuming that all data items are packed at the beginning of the bin).

      There are two distinct algorithms for modifying the lists in the 4-bins array. One algorithm assumes that the lists are unordered, and the other that they are ordered. All lists in a given 4-bins array must be of the same type, either ordered or unordered.

      The algorithm for unordered lists is the simpler of the two and always ensures that the 4-bins array is used in the most optimal way. The procedures for inserting and deleting an element is as follows: (i) to insert an element, simply append it to the end of the list, and (ii) to delete an element, overwrite the slot of the element with the last element in the list. See Figure 5 below.

      Figure 5. Modification Algorithm for Unordered Lists

      The algorithm for ordered lists is only a little more involved. We introduce some notation to ease the discussion. Number the bins that make up a list sequentially from zero, and let u(i) be the number of data items actually occupying bin i; that is, u_i is the usage of bin i.

      The procedure for inserting an element into bin i is as follows:

      1. if u(i) < 4, then insert into bin i;
      2. else if u(i-1) < 4, then insert into bin i-1;
      3. else if u(i+1) < 4, then insert into bin i+1;
      4. else split bin i into two bins; redistribute the elements accordingly; and insert into one of the bins, ensuring the proper ordering of elements.

      The procedure for deleting an element from bin i is as follows:

      1. remove the element from bin i, decrementing the usage count;
      2. if u(i) = 0, then unlink bin i from the chain of bins;
      3. else if u(i-1) + u(i) <= 4, then combine bins i-1 and i;
      4. else if u(i) + u(i+1) <= 4, then combine bins i and i+1;
      5. else nothing further need be done.

      Analysis of Memory Usage

      We assume the minimum amount of memory needed to store a dataset is determined directly by the number of bytes in the dataset itself. So we consider that a dataset of one million 4-byte integers requires a minimum of 4 million bytes, even if the values are sufficiently limited in their range to make it possible to store the same data without loss in 1 million bytes. That is, we are excluding the quite different definition of minimum memory usage that would arise in a discussion about compression. The purpose of the following analysis is to examine the degree of overhead beyond this straightforward calculation of the minimum amount.

      As a basis for comparison, we note that the minimal representation uses exactly the minimum amount of memory. Hence, the ratio waste/data is zero for this scheme. To determine this ratio for the object-based linked-list representation, suppose that each data element takes up 4 bytes, that each link pointer takes up 4 bytes, and that each object takes up a further 16 bytes as a consequence of descending from Object in Java. Then waste/data = (2*4 + 16) / 4 = 6. To determine this ratio for the array-based linked-list representation, suppose the same sizes as given above for data and links. Then waste/data = 2*4 / 4 = 2. The determination of this ratio for the bin-arrays scheme is more complicated; however, we can see immediately that if all lists have fewer than 4 elements, then waste/data = 0.

      Therefore, without a loss of generality, we can restrict our analysis to lists with 4 or more elements. Moreover, since the insertion and deletion algorithms work on each list independently of all others, we can further restrict our analysis to the memory usage of a single list. So suppose that we have a list of n >= 4 elements. There are two analyses to perform, one for the case of unordered lists and another for ordered lists.

      We first introduce some notation. Let k be the number of slots available for user data each bin. Let l be the number of slots taken up by links (or other administrative data) in each bin. Let n = kq + r, 0 <= r < k be the number of elements in a list. Finally, let m be the number of bins taken up by a list. In our case, k is equal to 4, and l is equal to 2. In the following analysis, assume that each data element and each link takes up 4 bytes.

      It is easy to see that when a list is unordered all the bins except the last will be fully occupied. Hence, if a list has n = kq + r, 0 <= r < k, elements, then the overhead equals the sum of l slots of link data per bin and k-r data slots wasted in the last bin; that is,

                   { lq + l + k - r   l + (l + k - r) / q
                   { -------------- = -------------------, if r > 0    (1)
           waste   {     kq + r             k + r/q
           ----- = {
           data    { lq   l
                   { -- = -, if r = 0                                  (2)
                   { kq   k
            

      As n goes to infinity, q goes to infinity, so that Eq. (1) approaches l/k, which is Eq. (2). In fact, Eq. (2) is the lower bound of Eq. (1) as Figure 6 below shows for the case when k = 4 and l = 2. The overhead is lowest whenever n is a multiple of k. The overhead is highest when n = k + 1. In Figure 6, we can see that the overhead peaks at 1.4 when n = 5, remains less than or equal to 1.0 for all other values of n, and sinks to a minimum of 0.5 whenever n is a multiple of 4.

      Figure 6. Overhead in Unordered Lists

      The analysis for ordered lists is a little more complicated. The restriction that the elements be kept in order means that the bins will not in general stay as well-packed as unordered lists in the face of arbitrary insertions and deletions. However, the insertion and deletion procedures ensure that the worst-case memory usage remains bound. They do this by maintaining the following two invariants on the structure of the chain of bins that make up a list:

      1. if m = 1, then u(0) = k;
      2. for each 0 <= i < m - 1, u(i) + u(i+1) > k.
      The first says that if a list takes up only one bin, then that bin must be fully occupied. The second says that the usage of any two adjacent bins must add up to more than k. The second therefore implies that u(i) > 0 for all i. It is immediately obvious that these invariants hold when a list is first put into the 4-bins array, which happens exactly when the list has k elements. We can easily verify that these invariants hold as arbitrary elements are inserted and deleted.

      First, consider the insertion algorithm when inserting an element into bin i. By hypothesis, the invariants hold true, and so u(i-1) + u(i) > k and u(i) + u(i+1) > k. It is easy to see that these relations will continue to hold if any of the u(j) values is increased by one, which is what would happen if an element was inserted into bin i-1, i, or i+1. So suppose that none of the three adjacent bins has room. Then u(i-1) = u(i) = u(i+1) = k, and bin i will be split into two bins, i' and i'', with the elements distributed in some manner between the two. The result will be that u(i') > 0, u(i'') > 0, and u(i') + u(i'') = u(i) + 1 = k + 1. This implies that u(i-1) + u(i') = k + u(i') > k and u(i'') + u(i+1) = u(i'') + k > k. Hence the invariants will be maintained.

      Next, consider the deletion algorithm when deleting an element from bin i. First, consider the case where bin i has only one element. By hypothesis, the invariants hold true, and so u(i-1) + u(i) > k and u(i) + u(i+1) > k. That is, u(i-1) > k - 1 and u(i+1) > k - 1. This means that u(i-1) = u(i+1) = k, and hence u(i-1) + u(i+1) > k. Therefore the invariants will hold after bin i is unlinked from the chain. Next, consider the case where bin i has more than one element. Let i' be bin i after the element has been deleted. If u(i-1) + u(i') > k and u(i') + u(i+1) > k, then we are done. So suppose that u(i-1) + u(i') <= k. Then the deletion algorithm will combine bins i-1 and i' into bin i'' (see Figure 7 below). In the resulting chain, bins i-2 and i'' are adjacent, and bins i'' and i+1 are adjacent. We need to show that the second invariant holds in each pair. First, note that u(i'') > u(i-1) and u(i'') > u(i'), since u(i'') = u(i-1) + u(i'). Now consider the first pair. By hypothesis, u(i-2) + u(i-1) > k. Therefore, u(i-2) + u(i'') > u(i-2) + u(i-1) > k. Now consider the second pair. Similar reasoning shows that u(i'') + u(i+1) > u(i') + u(i+1) > k. Therefore the invariants hold in each pair. The other possibility when bin i has more than one element--namely, u(i') + u(i+1) <= k--is similar. Hence, in all cases, the invariants are maintained after deletion.

      Figure 7. Steps in the Deletion of an Element

      The invariants ensure that the worst-case memory usage is bounded for any given list length. Intuitively, the invariants impose a lower limit on how thinly the elements may be spread out in a list by a sequence of insertions and deletions. The worst-case memory usage is determined only by the number of bins used, and in particular is independent of the arrangement of the elements within any bin. It is easy to see that the arrangement of the elements does not matter, since a list of n elements taking up m bins always has a waste of (k+l)m - n slots, regardless of the arrangement. Hence, using the maximum number of bins possible for a given list length leads to the most waste. Conversely, if a list is stored in such a way that it creates the most waste, then it will necessarily span the maximum number of bins possible for its length. For suppose not. Then a list of n elements is stored with the maximum waste in x bins, and yet it is possible to store the same list in y > x bins. The waste for y bins is (k+l)y - n >= (k+l)(x+1) - n = (k+l)x - n + (k+1) which is greater than the waste for x bins--a contradiction.

      Therefore, the worst-case memory usage for a list of a given length is determined precisely by the maximum number of bins that the list can span under the invariants. Suppose a list has length n = (k+1)q + r, 0 <= r < k+1. Then the maximum number of bins z that the list can span is given by:

                         { 2q + 1, if r > 0                            (3)
                     z = {
                         { 2q, if r = 0                                (4)
            
      This is a consequence of the second invariant. The reasoning is as follows. For a list spanning m bins, the invariant requires that u(i) + u(i+1) > k, 0 <= i < m-1. In particular, it requires that the sum of the usage of each successive pair of bins be greater than k; that is, u(0) + u(1) >= k+1, u(2) + u(3) >= k+1, and so on (see
      Figure 8 below). In light of this, consider the case where r = 0, that is, where n = (k+1)q. Suppose on the contrary that the list spans z' > z = 2q bins. Then the list spans the bins 0, 1, ... , 2q-1, 2q, ... , z'-1. In particular, it must be the case that u(2q) >= 1. Now, as we saw, the second invariant requires that u(0) + u(1) >= k+1, u(2) + u(3) >= k+1, ... , u(2q-2) + u(2q-1) >= k+1. Hence, u(0) + u(1) + ... + u(2q-1) + u(2q) >= (k+1)q + u(2q) > (k+1)q. This implies that the list has more than (k+1)q elements, which is a contradiction. Therefore, if n = (k+1)q, then the list can span no more than z bins. Next, consider the case where r > 0. For this case also, suppose the contrary. Then the list spans z' > z = 2q + 1 bins. Reasoning as in the previous case establishes that u(0) + u(1) + ... + u(2q-1) >= (k+1)q. This means that the remainder of the elements, which number at most 0 < r < k+1, must be in the bins 2q, ... , z'-1. Since z' > z, bins 2q and 2q+1 at least are a part of the list. They are also adjacent bins, and so the second invariant requires that u(2q) + u(2q+1) >= k+1. However, there are only r elements left with which to fill them, and r < k+1. Therefore z' cannot be greater than z, and this finally shows that z is an upper bound in all cases.

      Figure 8. Usage of Successive Pairs of Bins

      We have shown that z is an upper bound on the maximum number of bins that a list can span. It is in fact exactly the maximum value. There is a distribution of elements allowed by the invariants which causes a list to span exactly z bins. The distribution is as follows. Suppose a list has length n = (k+1)q + r, 0 <= r < k+1. Then distribute the leading (k+1)q elements in q adjacent pairs of bins such that the first bin of the pair has a usage of 1, and the second has usage k. If there are any remaining elements, that is, if r > 0, then put them all in a final bin (note that r <= k). See Figure 9 below.

      Figure 9. Worst-case Distribution of Elements

      Knowing now the maximum number of bins z that a list may span, and that the waste for a list of length n spanning z bins is (k + l)z - n, we can compute the ratio of waste to data as follows:

           waste    (k + l)z - n   (k + l)z
           ----- = ------------- = -------- - 1                        (5)
           data          n            n
      
                   { (k + l)(2q + 1)       2(k + l) + (k + l)/q
                   { --------------- - 1 = -------------------- - 1, if r > 0 (6)
                   {  (k + 1)q + r             k + 1 + r/q
                 = {
                   { (k + l)2q       2(k + l)
                   { --------- - 1 = -------- - 1, if r = 0            (7)
                   {  (k + 1)q         k + 1
            
      Note how the ratio depends only on k and l in Eq. (7), and how Eq. (6) approaches Eq. (7) as q goes to infinity, which happens when n goes to infinity.
      Figure 10 below shows the worst-case memory usage plotted alongside the best-case memory usage. The best-case memory usage of ordered lists is the same as the memory usage of unordered lists of the same length. For lists of length 4, 5 or 9, the figures for the best and worst cases coincide. The worst-case memory usage peaks at length 6 to 2.0 and stays less than 2.0 for all other lengths. We can also see the worst-case memory usage converging to the value of Eq. (7), namely 1.4.

      Figure 10. Overhead in Ordered Lists

      Conclusion

      Bin-arrays can store large amounts of data more compactly than in common implementations of doubly-linked lists, while still allowing modifications in constant time. The best straightforward implementation of doubly-linked lists--the array-based linked-list implementation--has a fixed waste-to-data ratio of 2. Bin-arrays, even in the worst case, do no worse. The amount of overhead in real use depends too much on the actual dataset and the actual sequence of insertions and deletions to be estimated. However, we can still make a few observations. If all the lists have 3 or fewer elements, then memory usage will be just a negligible amount above the minimum. If the lists are unordered, then memory usage will always be better than the array-based linked-list implementation. In this case, the waste-to-data ratio reaches a maximum of 1.4 for a list of 5 elements and remains at or below 1.0 for all other lengths. If the lists are ordered, and they are only appended to, then memory usage will be the same as for the case of unordered lists. If the lists are ordered, and elements are inserted into arbitrary positions, and elements at arbitrary positions are deleted, then worst-case memory usage can equal that of array-based linked lists in the case of lists of length 6. For lists of all other lengths, even the worst-case memory usage will be better than that of array-based linked lists. Hence, in situations where reducing memory usage is critical, bin-arrays may be a promising approach to implementing a collection of doubly-linked lists.


      Young Hyun
      Last modified: Mon Dec 11 11:05:32 PST 2000 There was peace and harmony in the home of the Reverend Taylor. An air of neatness and prosperity was about his four-room adobe house. The mocking-bird that hung in a willow cage against the white wall, by the door, whistled sweet mimicry of the cheep of the little chickens in the back yard, and hopped to and fro and up and down on his perches, pecking at the red chili between the bars. From the corner of his eyes he could peek into the window, and it was bright with potted geraniums, white as the wall, or red as the chili, or pink as the little crumpled palm that patted against the glass to him. It was the first scene of the closing act of the tragic comedy of the Geronimo campaign. That wily old devil, weary temporarily of the bloodshed he had continued with more or less regularity for many years, had[Pg 297] sent word to the officers that he would meet them without their commands, in the Ca?on de los Embudos, across the border line, to discuss the terms of surrender. The officers had forthwith come, Crook yet hopeful that something might be accomplished by honesty and plain dealing; the others, for the most part, doubting. The two rival Ministers of England became every day more embittered against each other; and Bolingbroke grew more daring in his advances towards the Pretender, and towards measures only befitting a Stuart's reign. In order to please the High Church, whilst he was taking the surest measures to ruin it by introducing a popish prince, he consulted with Atterbury, and they agreed to bring in a Bill which should prevent Dissenters from educating their own children. This measure was sure to please the Hanoverian Tories, who were as averse from the Dissenters as the Whigs. Thus it would conciliate them and obtain their support at the[19] very moment that the chief authors of it were planning the ruin of their party. This Bill was called the Schism Bill, and enjoined that no person in Great Britain should keep any school, or act as tutor, who had not first subscribed the declaration to conform to the Church of England, and obtained a licence of the diocesan. Upon failure of so doing, the party might be committed to prison without bail; and no such licence was to be granted before the party produced a certificate of his having received the Sacrament according to the communion of the English Church within the last year, and of his having also subscribed the oaths of Allegiance and Supremacy. The earliest martial event of the year 1760 was the landing of Thurot, the French admiral, at Carrickfergus, on the 28th of February. He had been beating about between Scandinavia and Ireland till he had only three ships left, and but six hundred soldiers. But Carrickfergus being negligently garrisoned, Thurot made his way into the town and plundered it, but was soon obliged to abandon it. He was overtaken by Captain Elliot and three frigates before he had got out to sea, his ships were taken, he himself was killed, and his men were carried prisoners to Ramsey, in the Isle of Man. "I see you've got a cow here," said a large man wearing a dingy blue coat with a Captain's faded shoulder-straps. "I'm a Commissary, and it's my duty to take her." Suddenly they heard little Pete's voice calling: "Stop your ranting and tell me how the hogs got you." "Hold, Lord de Boteler," interrupted Father John, calmly; "the threat need not pass thy lips: I go; but before I depart I shall say, in spite of mortal tongue or mortal hand, that honor and true knighthood no longer preside in this hall, where four generations upheld them unsullied." HoME小明看看台湾视频发布 ENTER NUMBET 0017
      www.kege9.net.cn
      pejy.com.cn
      eran0.net.cn
      xukai6.com.cn
      www.cijie9.com.cn
      www.kezhi4.com.cn
      www.digan4.net.cn
      zhipay.net.cn
      www.zhifu4.com.cn
      www.doumi7.com.cn
      荒木琪琪色 人体裸体metcn庄媛 黄色扣扣号删除 WWW.MMTT88.COM WWW.CCC911.COM WWW.720BB.NET WWW.DSO9.COM WWW.ZY021.COM WWW.36094.COM WWW.LO03.COM WWW.ATZ5.COM WWW.ZPJX168.COM WWW.GDGJ13.COM WWW.CQANT.COM WWW.HHH217.COM WWW.LINUXSEE.COM WWW.08III.COM WWW.YOUXIXJ.COM WWW.YX988.COM WWW.BS0086.COM WWW.102SE.COM WWW.30JIE.COM WWW.QKDQT.COM WWW.BLZ38.COM WWW.ZGBXFZ.COM WWW.MM105.COM se94semoc 38ybyb改成啥了 鲍陌生人 古风性爱故事 www小明影视 鲍鱼12p 在线av20gan 色㏄影院 插姐妹抱妹妹嫩妹妹图 日妣漫画 550022com 小浪逼网站 hentai屁股 日本最大胆照片体图 玛丽罗斯3d同人动画h在线看 4k4cnav 网姨成人小说网 东方在线Ar av视频在线现在就能看 h片网站登入 操老婆妹子 人体艺术人妻小说 两男一女激情小说 影音先锋强奸影片 蝌蚪窝软件下载 wwwpp398comVR 熟女制服丝祙 日本骚货的鲍鱼逼 1111kf李宗瑞 在野外日妈妈 伦理电影小说 成人驴 做爱图贴吧 羽月希在线Av 无极影院美腿丝袜 www98mmcom 法国极品在线看 黄片西瓜影音 儿子性虐妈妈乱伦成人av在线免费观看 久久女人撸视频 人妻乱伦赤裸色宫小说 国产寂寞少妇推油高潮 1818lucow 妻子与大学生黑子 秋侠影视网 不用播放器放的日本AV 444-乱伦小说 色小姨子影院 自拍自慰免费观看视频 男女上床私照 超碰在线视频91在线视频XIAAV在线视频 欧美私处艳照 巳剥开的女孩阴辱图片 139那个黄色网站是多少 288bb 97gan裸体美女 人与动物天堂网站大全 校园激情人妻 秋霞小说另类 蔡淑华magnet 变态性交大合集 欧美亚洲制服强奸乱伦 妞妞基地在线视频 swww22bbmmcom 97caopao abn300c0m 好阿姨社区mp4 奶大性爱基地 白皙美女被干 人妻交换图文小说 日本成人视频制片公司 久久热精品在线视频 久草在线青青草福利 激情做爱乱轮小说 S666AVCO 偷拍自拍第一页46 成人电影亚洲欧美偷拍视频网站 操欧洲女人小说 潮吹套图收纳全球最精美潮吹套图 日韩不卡av影院 在线视频主播AV av爱vav大帝 度巴拉斯电影在线观看 和妈妈一起乱伦九城社区 性之听吧小苮儿 木村泓野 做爱动态图片黄色片 终极强奸 插小穴淫 高清炮大美女在较外 家庭乱伦色电影 丝袜少妇被插 狂操少妇逼图 狠狠曰图 骚逼yaoyao 操性感白领少妇小说 黄色撸撸一级片 大乳房美女人体 美女裸照操逼照 色中王 日本美女美鲍人体图片 大黑吊妈妈 色尼玛夜射猫成人在线视频 guo外人体艺术 公媳激情小说挟 胖老太太肏屄 叫公公操了 母子同欢 美女人体馒头 苍井空电影全集55小说 舔足h 人体陈佳丽 WWW_4B6666_COM WWW_178HE_COM 快播摞摞 我和熟女的性爱 鸡巴插少女的逼 北京公交车线路 一本道草碧二区 幼香阁幼幼交妈妈 人体做爱写真 美国黄丰满强奸 色bb的电影 无需播放器操逼视频 三级经典成人影音先锋 天狗肏屄内容介绍 欧美性爱区色吧第一页 得得日在线视频 WWW51MM520COM 国产自拍图片区国产区小说区 淫女乱伦群交 强奸同学母小说 先锋影音自慰 欧美大屁屁黄 怎么用bt撸影院 kk四四kk 我爱看片免装版 情系社区五月天 哥哥玩弄弟媳的嫩穴 无码少妇尸体 WWWNIGHTLIFECOM sao370 伦理另类电影 操逼高潮呻吟 偷靑家庭乱伦小说 我插的美女好爽啊无约定香甜 WWW9SKBCOM 东北火车道银镯子 中国阴茎勃起从小到大图 两男干一个漂亮人妖 韩国艳照门视频影音先锋 脱男孩子的裤子视频 把老婆操出白沫 67成人熟女图片 731部队电影全集 在线阅读有个疯狂做爱的小说 8080av 制服诱惑色妹妹校园春色 黑寡妇黄色小说 外国黄色人体艺术 女主播淫荡小说 911色色色中文成人激娱乐网 撸波波rrr777 美女制服诱惑男女 奥特曼苍伦理在线 av角色扮演论坛 www三级片大全网 爆乳欲室在线观看 蒋雪儿大奶子 www785eihdj 丝袜乱伦撸色在线 43脳ecom 日本色倩女星波多野结衣 水中色婷婷 裸体毛网站 91pron自拍福利网 公狗肏女人屄视频 美女姝孑囡 丁香伊人 外国性交电影wwwzzzz20com 公司熟妇杨阿姨43 久久热久久色淫涩帝国 诱惑网日本翁媳乱伦 射雕英雄传插曲 离婚少妇的秘密 吉吉影音乱伦小说 天天影视av最新版 台湾妹4xpxp中文网 七色色色久久桃花综合 www19fffcom升级网址 好屌色qqc 灯草和尚无修版百度云 美女BB打炮 先锋三级片ed2k 人与猪小说 澳门新葡京国外在线视频 国产熟女人人操色图 吉吉资源变态 拍揄自揄网 a插妹妹AV 日逼图欧美 芭芭拉有声小说吧 淫有声小说mp3 可以用的h网 www酷狗www酷狗 www酷goucn 酒色网一生酒色 40岁看黄片 四门成人网 好色姨妈电影 淫骚影视A片 anima兽交 赤裸宫殿谁有E谁有G adultbig影院 去干网 色人格阁姐妹爱 天天基金每日净值表 狠很橹图片 涩情网站 色综合资源平台 色猫电影乱码 人人福利网址 avhd110 淫的的方式程在线观看 91大神教兽极品 苍井空的大尺度AV片资源 乱伦视频app 美国推油A片 搞B电影吧 国产自拍换 孙迪A4U 熟女w中出福利视频 小清午夜视 小姐操逼免费看视频 小姐上位性视频 小黄片在线 曰~本av翘臀熟妇 日韩少妇日逼潮吹视频 www5151HHCOM 拔插拔插8x8x7987 香椎りぁ大全 288影院 两穴同入在线 屄的视频无毛 宅男视频 跟52sihu一样的网站 97怡红院快播 黑丝做爱插死她电影网 秘拍福利 娜美 h 里番 acg 中文无码强奸无码 天堂2014手机在线丝袜 啪啪影院车震 国产自拍 看片 在线播放欧美性爱 九州资源永久免费视频 欧美90后性交免费视频 丝袜美腿亚洲视频BT下载 福利网自拍 五色月色婷婷综合 阿v2014天堂网手机网 r任你日 594kkcom直播app aiaifulidaohang 犬屋敷 影院 被窝电影网wwwgaoavcc 国产精品 泷泽萝拉 i色大姐 春暖花开 日本 迅雷下载 大学生 磁力下载 xofuli福利社视频在线观看 xxx肛交视频 国产自拍三级 下载 中国一级片迅雷种子 罗曼诺 (443) -(双肩包女) 伦理国产小视频 一本道d d高清在线播放 ii69 欧美成人凹凸视频播放 自拍偷拍 澳门 国产女生自拍网址 成人看片小视频 影音先锋中文字幕亚洲综合小综合 超碰 日本av sdde398手机观看 初中生在线视频91 大桥恸哭的教师在线观看 mxgs234 欧美真人性爱视频直播 高清无码在线播放。 国外顶级福利导航 台湾女优番号 黄色视频小说网站 【劲爆!浙江少妇被黑人老板直接口暴!】 潮吹迅雷磁力链接 国产开档丝袜 成人色色v 棚户区卖暗视频 播放 周晓琳花生牛奶在线 欧美v5成人性爱视频 有哪些h的网站 先锋影音成电人影 血色国度在线 性交黄色视频网站 国产自啪精品 97午夜免费神马福利影院 真正的操逼视频 K色频道 狼国激情 吴藏雨自慰视频 色琪琪AV永久观看 97碰碰碰超视频视频 想插进去影院 有声老湿爱爱视频 午夜影院福利十二点 邪恶少3d欧美里番工 深圳同居换夫 午夜大黄视频播放 泷泽萝拉在线电影 里番OAC 北 条麻妃无码电影 操逼小故事 不穿内裤西瓜影音 日本伦理片100部老表 波多野结衣大5战黑人 地铁xoxo 白石茉莉地狱挑战 在线 荒野女人色 东方亚洲Av在线 爆乳操逼视频 操逼逼爽 啊啊啊视频 病态爱慕百度云 【PPPD-376】催眠で寝取られ中出しされた爆乳人妻 JULIAin京香ju www26yjjcom 在大街上穿着裙子没带自慰棒视频。 avtv866 日韩经典 第十页 sowo999换成什么网站了 Xartbreeonmyown链接 乱伦骚爽视频、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、 aqy777 混血大眼小仙女楼道在线观看 啪啪成人影院动漫 美女黑森林 magnet 黄片,高潮不停 日本大黄片狠狠干免费看看 www154nte 周晓琳视频40p 迪丽热巴三部曲在线播放鲁爽 站长推荐磁力下载 mp4 秽色福利小视频 竹内真琴 在线观看 嘿嘿嘿迅雷 波多野结衣末剪版在线观看 騲寡妇影院 本地爱爱视频 草i碰在线视频 vod视频国产 在线熟女导航 757ys视频合集 日姘黃片動著 圣窝美女受拘束 女王调教sm视频全集 国产自拍 小辣椒 不穿内裤运动无码 一本道69 手机看片你憧的 亚洲东方无码 橘梨纱AV在线观看 l伦理电影五月天 四虎激情速播 国产精品w4w 日本黑帮强奸 人妻众大香蕉视频在线播放了 五十路熟妇专区磁力链接迅雷 726伦理片 六度小视频黄色视频 精厕 教室里唡腿偷偷夹笔杆 福利点云视频 青草影院在线视频 超碰人人很很操图片 ribezhenrenxingjiao 人鲁做爱 角斗士成人版百度云 奇优电影院 爆菊花视频 青虹资源搜索平台 红楼吧视频网在线 很漂亮的美女口爆吞精视频 黄色视频日本无码404 红衣军 狐狸视频美女脱衣服 黄色美女赤裸裸直播下载 日B-美女免费 四虎院视频影 近亲相x系列番号ed2k 超碰在线 黑丝 酒井千波肛交 伦理聚合在线兔费观看 feifeishijei 欧美重口味 mp4 fuck yeah 片桐手机在线资源 84pa澳门普京 下身插入b射精视频 能让我下面流水的黄文视频 韩国美女vip视频在线观看老司机影院 国产自拍第9页 韩国在线自拍 国内自拍hd 国产自拍sw 呆哥北京酒店爆操背着老公偷情的漂亮良家少妇2,趴在窗台让行人看着自己被操, 老司机综合影院 国庆 厕所视频 opud279 秋霞无码理论欧美电影 杨颖啪啪的视频完整版 中国无码黄片 新加坡人美国艳星口交视频 欧美畜生伦理 我们轮奸了同学的姐姐 男女性交图163网 仓井空百度视频 偷拍真实性交照片 我日了翠翠不不庇 偷拍真人免费做爱 欧美成年人黄色pp 一条真生先锋影音 免费的皇瑟图片 母性本能在线播放 香港艺术片电影 男人肏母狗小说 李宗瑞最全照片 我和熟女的爱恨离别 小女裸体社美人艺术 东北娘们0809操逼操网站 美女和男人靠b视频要色 四p三男战一女干到不会走路 梦露人体艺术 日日影院 屄喝啤酒 人与兽全集1 李宗瑞 自拍偷拍 性生活录音 btwohenainailuanlunxiaoshuo 北原美香子bt 什么样的女人最性服 轮奸三姐妹 明吾岛 uu人体导航 人妖zzz女人 欧美bt区 电视能播放图片吗 妹妹被吸奶子 大鸡吧操美女屁眼 韩国色图无码 很很撸欧美色图 亚洲春暖花开 中文字幕三级农夫 野外爱爱现场视频 in 性吧 欧美女人狠狠插 轮奸多毛女影音先锋 人体艺术中心图片 抽插网站 熟女和小伙做爱 吹屄癖 鬼魂图片 男性露私人体艺术照 日本乱伦 一女多男 群交 毛毛片性爱做爱视频 簧片高清在线观看删除 秦汉近况 btav种子下载 影音先锋色片插屈眼护士 哪有骚逼可肏 日圣酒 酒店偷情鸡巴操逼快播 葡萄牙人体 尿尿淫淫 矮人的性生活 mesubuta被患者袭击的美人护士君野纱枝 撸sese xxxsex24 搜狗meicaobi 名门小妹 美女的蝴蝶穴 WWW_988SE_COM 淫荡漫画 粉色骚逼 抽插熟女撸 三级成人色影院 瑟瑟图片 WWWXBX9COM 成人电影网址youjizz 做爱吧波多 日本虐奶头电影 dy4480影院 国内莫航空公司空姐性爱视频合集影音先锋 兽交岳母 求网址www55 自拍露阴毛 爱裸睡的丹丹全文阅读 三屄色图图片 苍井空老师动作片视频 为什么日本女孩子那么矮 草老婆逼免费视频 日本阳道美女图片 李宗瑞6是 手机快播看a片的网址 欧美大逼50p 性感大奶阿姨 女性交艺术 tradesmarter中文网站 少女做爱偷拍自拍18 wwwbaiduxxx 黑人性生活类视频 男操女逼啥意思 日本裸身护士 大胆展示人体秘密 千干射 亚性夜夜干 玖玖爱资源站www52014zyzcom 护士宝贝内射12p 视频裸聊女同骚逼 美女丝袜的诱惑写真视频搜狗搜索 涩涩爱图片图图新闻 人妻按摩在线成人免费 综合色站小说 好色人妻的有关小说 多毛美女做爱 色波小说 办公桌下舔总裁13p图片 97在线视频超碰91免费zsptmdcomwww78p78info 开埠夫妻床上做爱黄片儿 亚洲电影wwwyytt2012com 日本公公强奸乱伦久草电影 川崎理惠的唯美情 日韩做爱套图 人体四元穴在哪里 天天日天天看在线影院365ahnet 绝色干综合网 狠狠日天天干色色撸 手机极速云播在线电影 乳汁女优 射墙上黄色网站 干骚逼性交视频 福利电影wwwnj6zcom ca0bi zzji直播 欧美妓女乱干视频 大香蕉堵场 国产成绫合 WWW3344BH 日本吃精射精颜射在线视频观看 黄色乱伦母乳 欧美av19ufcomwww39ppppcom 欧美老大爷给美女开苞 秋霞福利小说书 插插动 天堂天天操逼 福利视频最干净 肉棒调教 小女孩的AV资源 操逼美女10p 经典有声插插中和网 性交口交天天撸 裸体模特在雪中 gexxxncm 肉蒲电影完整版qvod 强奸社长qvod 大胆日本女优 车上那个操舅妈 性爱丰满呻吟 林心如人体艺术照 黑泽爱迅雷种子 wwwhhmmcom 武汉玩小姐 扶她av资源 强奸乱伦嫂子的 簧片在线观看网站 wwwav186pp 性爱视频小说 b站加密房间是什么 在线看免费视频同志 谢依霖个人资料 人妻Av伦奸 lululuse 亚洲性爱欧美色图乱伦 play海量av图片 老大妈性爱视频 a片玛利亚 987he www5777ddcom下载 涩涩综合 口交av免费视频 妹妹狠狠搞 国产黄瓜自慰视频 日本盗撮在线视频 美女全裸直插 成人电影网站成人片免费收看 日本空姐三片 有电影有小说网站推荐你懂 www,100av,com 车牌号网址 乱伦性爱技巧小说 成人三级图 chengrenjiqingwangzhan 毛毛战队 母娘乱馆在线免费观看 121四虎 国产女神学生 色萝莉网 欧美性爱之幼女 末世贱淫 青青草av久草yjhmwcnwww668eyymcn ww77pao 好深好大18p图 自慰视频成人 性色影视 haole第四色 大香蕉成人网dxj998com 淫姐姐手机影院 一个释放的蝌蚪窝超碰 狠狠干胖妞 一本道网A片 123CTCTCOM 涩涩网影音先先锋 撸二哥男人在线迅雷看看 国产v成人 80性爱网 亚洲妞妞 美女直播自摸 俄罗斯伦理电影 制服诱惑丝袜美腿成人自慰 去色人阁 两穴先锋 大岛优香在线超碰 西西大胆专业幼女模特人体 夫妻白天爱爱自拍 日月操妹av电影 579bbee 欧美图片亚洲伦理 色色成人9797aa 清纯妹子三级 小说人妻系列 操奶奶丝袜小说 74xc影院 欲奴zxgk 像av帝国一样 a片毛毛网 日韩不卡av影院 久久禁典 91avi视频 柳箐箐人体艺术作品大全 色工厂qvod百度诱惑 新片 www080secom 百合女如何做爱 西瓜影音小姨子乱伦 苍井空全裸无马赛克 偷偷撸1删除 美女被双插 偷拍色老大导航400色导航 快播a片女人和狗 巨乳做爱电影 ggmmkkcom 亚洲色图欧美色图少 妇 熟 女 奶牛丑婆等着您 找人狠狠操老婆舔逼 波多野结衣洗澡做爱 3p美妇到高潮 国产淫人妻操白嫩的桃子奶少妇 www357vvcom 丝袜脚撸阴茎 � 大阴茎 苍井空 闪现君打阿乐 李宗瑞快播2 533hh kaobi动作片 制服美女性交图 回家开门时被人强行拖进家中强奸中的女优 av女明星做爱的图片 不穿戴任何衣物的大奶美女 红稠成人网 白嫩观音坐莲 50岁女人给我口交 织里吧 办公笔记本 重庆话学习网 哈尔滨美容院 jialefu 色青五月天兽交 外国人操逼视频成人视频 日本裸照丑文 美女扒b图片 免费观看杨思梅 操逼出水动态se图 亚洲美女写真做爰网 搞穴影音先锋 14岁少女的美腿玉足 露b热舞 日本德田与孙女性交照 偷拍做爱爱 波多野结衣迅雷下载地址 学园2淫虐の図式 伦乱激情家庭 性感丝袜美女图库欧美色图欧美色图 h亚洲成人电影狠狠地插 视频五十岁老女人女人乱伦 欧美美女30p视频 一本道女同 爱爱谷色导航网 华娱花花世界 亚洲狼 鸡鸡插 大帝av大帝在线视频成人 亚洲女优访谈 三个大奶妈同吃一跟大鸡巴 女人服十精丸 snis191手机在线观看 熟女做爱色图15p 丰乳肥臀迅雷 骚妹妹qq有木有 美国黄色人兽a片 3p老婆肉文 曰本操操操成人电影 亚洲欧美小说动漫成人在线 第四色影视厅 吴江同人 2222znet 丝袜乱伦撸色在线 与淫荡女医生做爱 古典黄蓉武侠 相内司合集 91pron自拍福利网 26uuudi四色 大奶湘妹子 千百惠露点 胖女人拳交 假阳具扩肛自慰在线视频 成人视频社区逼爽 福利影院童话村 对白淫荡的母子乱伦妈妈 哥也色人格得得爱色奶奶撸一撸 处女约清新味 wwwhaoa01cm 性吧图片亚洲色图 淫逼逼成人 优优人体大胆少妇鲍鱼qqrtyscom 2017色偷偷偷免费视频 狼人综干合小说下另类小说 冰漪大尺度私拍 爱爱谷张悠雨大胆 少妇酒店掰穴自拍 春色满元 樱井莉亚壁纸图 www酷六cn 开心五月天最新网站 东京热快播图片 有名的黄色小说 漂亮妈妈唐雅婷 迷魂迷奸水 淫贱五月天 俺去也电影网 女厕偷拍工具 真?巨乳帝国 色女无罪成人网 斗转星移合成王国 超碰在线 来摸我 色和尚资源网资源站 惠美梨接线员番号 mp4 不要向下看天天影院 留守山野女人欲火难消 黑丝紧身衣电影 祼露毛片 偷拍自拍乱论小说 青草防屏蔽视频在线观看最新完整版 秋霞影视eu 翘臀性感蕾丝兔 日韩在现无马视频 日本女优视频在线 在线操逼视频网站 美国女孩成人免费视频 剧情之王sw036 澳门赌场毛片 国产自拍56页 激情影院体验服 品色影院 偷偷自拍 香港在线 超清优酷伦理影院 董美香ol 美肉流刑地2西野翔在线视频 黄篇免费人人干视频 乱伦性爱视频在线播放 美女互相自慰视频 69人体鲍鱼与真 九儿福利影院100合成。 曰韩男女性活自拍 thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOkJFM0M4REIzNDgyMzYwMEFCN0M5RUNEMj 偷拍自拍播放 东方影库300 幼自拍 初犬 无码 91影院午夜福利大合集 爆菊电影种子迅雷下载 艳照门eu2k www4445f 影视先锋大众 汤姆影院网址在线播放 穿越时空的爱恋兔费看 秋霞eusses极速播放 色小说综合网 久久影院的网址多少 好国产自拍 jappinesemilking 玩官太太骚B 福利757午夜云播 丁香女色婷婷 亚洲射域网 上原亚衣无码 在线 a片91视频 xo影院在线观看免费观看 俺也去激情5月丁香 紧急通知成人影院 63uuu 大学女生厕所 百度云 X 影片名:网红美女演绎学生看到老师穿着高跟丝袜很性感就尾随跟到家里和老 磁力链微信无码小视频 大胆二嫂和闺蜜3龙2凤5p大战真担心二嫂这单薄的身子骨受不了对白清晰 国产区视频美日本一本道 日逼视频免费看完 狂播小视频 金发天国无码磁力种子 在线约炮 孙雅种子 mp4 俺播 526成人网 23riri新地址 九州av–男人的天堂! 操逼处女自拍在线 嬴荡女老师视频在线观看 影音先锋大胸无码 找女模特种子下载 wpvr-108 先锋影音 免费看黄尤美 亚洲狼人干狼人伊人 欧美老人大屁股在线 偷拍嫩逼 国产开档丝袜 www4438XC0m WWW路4422 mp4 色噜噜一级综合 e80se 濑亚美莉 播放 影院 午夜福利真实 佛爷与美容院老板娘约炮 黑人巨屌 学院派女神翘课和富二代男友开房真会玩舔脚趾屁眼射了好多影音先锋 香草在线精品视频 小峰由衣视频无码 小姐打飞机尻视频 协和影视 JUY 颜射美女大学生 XXOO黄片视频 午夜黄页老师影院避孕套 韩国漫画肉肉片段 猪猪快播电影天堂us sdde318先锋影音 夜色奇趣 国产自拍91在线caoporn 操逼视频播放器 前田希美在线无码 最全面的成人网 国产自拍手机电影 能看r级电视的app iptd694无码截图 绑着做爱爽爽的视频 168D罩杯初次试镜娇喘连连 avavsese 雪音亚里沙 先锋影音 selangwoshipinzaixian 超级长发女神宾馆开房被狂操钱没白花一辈子玩一次死也值了还说不要不要我 sae精品自拍分享福利视频 sm男虐女地下室调教视频在线 超碰在线AV sw312在线观看 超碰人人o操 开平虐女视频 免费的小黄片视频 树凛花在线 亚洲无码第1页_亚洲无码av天堂_亚洲系列_亚洲av电影_亚洲av在线 东方在线1677 曰本亚洲三级视频 日韩SM高清 午夜小视院 尻逼视频美国 什马影院的午夜 自拍偷拍在线视频微拍福利 那有小姐操逼视频 久久草在线免费自拍 不堪欺辱的小林初花磁力链 国内自拍超人碰碰网 操B小X视屏 国产超碰在线福利看看 夏馨雨大尺度外阴展 4女性毛多 伦理片2012EEUS Freepornvideos-1 西瓜影音 大奶女神自慰视频 1212AV 猫咪av社区 rctd WWW*CC36*C0M 前台湿了的 香椎 ipz141在线播放 媽媽視頻胖女人性愛視頻 加勒比系列无码连接 强我电影线观看台湾 情欲丛林电影免费播放 激情大尺度迷奸片段片段 漂亮的主播成为性奴 ck在线仙桃影视肉片 紫藤·伊莉娜h动画 侵犯素人 magnet 空姐自慰视频在线观看 青娱乐午夜福利视频 令人惹火的邻家美眉 影音先锋 math40s小黄网 正在播放91大神dr哥 酒店爆肏白嫩 91dzdzcom 啪啪在线电视免费资源 女同av影片在线观看 黄色无码动漫视屏 快播高清播放器 吉泽明步人妻系列在线播放 伦理在线图片 国内自拍 欧美成人性交在线视频直播 带丝袜三级伦理电影有什么 一本道亚洲在线 我要色女社区 色虫网在线视频 狼成人网 美国成人制服 ジェマ解禁 卫生间强奸种子 【正在播放:女神的娇喘大鸡巴无套内射烟台96白嫩美小骚穴【日本免费av毛片在 高中生自拍在线 艹b动态图 成人福利伦理片 muziliangcaonila 川村まや痴汉 操弄揉 面接澜21 国内自拍女厕小便 三人做人爱免费视频免费视顽 国产野战修车皮裤美女 麻生希水三级 1级图片日韩 母子无码bt种子 xfplay变态另类 口交口爆p 母乳诱 人体掰b艺术 成人激情乱伦大集合 裸体美女私处裸露人体艺术 那里招越晋加弹工 影音先锋资源同性 美淫母亲的秘密 苍井空激情in 人与动物兽交第一页